An Energy-Efficient Internet of Things Relaying System for Delay-Constrained Applications

IEEE ACCESS(2022)

引用 1|浏览12
暂无评分
摘要
The emerging Internet-of-things (IoT) systems contain a large number of small wireless devices with limited energy, communication, and computational capabilities. In such systems, a helping station located between the IoT devices and backhaul servers can be deployed to broadcast the IoT devices to the backhaul networks. This paper investigates a hybrid energy-efficient framework using multiple energy harvested relays with data buffering capabilities. The relays are powered by a hybrid energy supply consisting of a traditional electric grid and renewable energy grid. We propose an energy efficient novel approach aiming to support the wireless uplink transmission from IoT devices to backhaul servers with an acceptable delay threshold or transmission deadline. A mathematical mixed-integer linear programming (MILP) optimization problem is formulated to optimize the relays' placement and energy consumption considering the association between relays and devices, instantaneous relays' battery level, and transmit power budget. Due to the non-convex nature of the formulated optimization problem, we propose two heuristic low-complexity solutions to solve this problem. Finally, we compare the performance of the proposed algorithms with exhaustive search solutions as a benchmark.
更多
查看译文
关键词
Relays, Internet of Things, Renewable energy sources, Delays, Throughput, Energy harvesting, Energy consumption, Internet-of-Things devices, IoT relays, relay planning, transmission deadline, delay
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要