A novel mutation in human EMD gene and mitochondrial dysfunction in emerin knockdown cardiomyocytes

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE(2022)

引用 0|浏览12
暂无评分
摘要
Emerin is an inner nuclear envelope protein encoded by the EMD gene, mutations in which cause Emery-Dreifuss muscular dystrophy type 1 (EDMD1). Cardiac involvement has become a major threat to patients with EDMD1; however, the cardiovascular phenotype spectrums of emerinopathy and the mechanisms by which emerin regulates cardiac pathophysiology remain unclear. Here, we identified a novel nonsense mutation (c.C57G, p.Y19X) in the EMD gene in a Han Chinese family through high-throughput sequencing. Two family members were found to have EDMD1 with muscle weakness and cardiac arrhythmia. Mechanistically, we first discovered that knockdown of emerin in HL-1 or H9C2 cardiomyocytes lead to impaired mitochondrial oxidative phosphorylation capacity with downregulation of electron transport chain complex I and IV and upregulation of complex III and V. Moreover, loss of emerin in HL-1 cells resulted in collapsed mitochondrial membrane potential, altered mitochondrial networks and downregulated multiple factors in RNA and protein level, such as PGC1 alpha, DRP1, MFF, MFN2, which are involved in regulation of mitochondrial biogenesis, fission and fusion. Our findings suggest that targeting mitochondrial bioenergetics might be an effective strategy against cardiac disorders caused by EMD mutations.
更多
查看译文
关键词
emerin, Emery-Dreifuss muscular dystrophy, mitochondrial biogenesis, mitochondrial dynamics, oxidative phosphorylation, whole-exome sequencing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要