Valence state and lattice incorporation of Ni in Zn/Co-based magnetic oxides

arxiv(2022)

引用 0|浏览6
暂无评分
摘要
Ni incorporation has been studied in a comprehensive range of Zn/Co-based magnetic oxides to elucidate it valence state and lattice incorporation. The resulting structural and magnetic properties are studied in detail. To the one end Ni in incorporated by in-diffusion as well as reactive magnetron co-sputtering in wurtzite ZnO where only the Ni-diffused ZnO exhibits significant conductivity. This is complemented by Ni and Co codoping of ZnO leading. To the other end, the ZnCo$_2$O$_4$ spinel is co-doped with varying amounts of Ni. In the wurtzite oxides Ni is exclusively found on tetrahedral lattice sites in its formal 2+ oxidation state as deep donor. It behaves as an anisotropic paramagnet and a limited solubility of Ni about 10\% is found. Due to its smaller magnetic moment it can induce partial uncompensation of the Co magnetic moments due to antiferromagnetic coupling. In the spinel Ni is found to be incorporated in its formal 3+ oxidation state on octahedral sites and couples antiferromagnetically to the Co moments leading again to magnetic uncompensation of the otherwise antiferromagnetic ZnCo$_2$O$_4$ spinel and to ferrimagnetism at higher Ni concentrations. Increasing Ni even further leads to phase separation of cubic NiO resulting in an exchange-biased composite magnetic oxide.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要