Deep learning-enabled real-time personal handwriting electronic skin with dynamic thermoregulating ability

NPJ FLEXIBLE ELECTRONICS(2022)

引用 16|浏览13
暂无评分
摘要
The rapid rise of the Internet of things (IoT) have brought the progress of electronic skin (e-skin). E-skin is used to imitate or even surpass the functions of human skin. Thermoregulating is one of the crucial functions of human skin, it is significant to develop a universal way to realize e-skin thermoregulating. Here, inspired by the sweat gland structure in human skin, we report a simple method for achieving dynamic thermoregulating, attributing to the temperature of microencapsulated paraffin remains unchanged when phase change occurs. Combining with the principle of triboelectric nanogenerator, a deep learning model is employed to recognize the output signals of handwriting different letters on ME-skin, and the recognition accuracy reaches 98.13%. Finally, real-time recognition and display of handwritings are successfully implemented by the ME-skin, which provides a general solution for thermoregulating e-skin and application direction for e-skin in the field of IoT.
更多
查看译文
关键词
Electrical and electronic engineering,Energy harvesting,Materials Science,general,Optical and Electronic Materials,Polymer Sciences,Electronics and Microelectronics,Instrumentation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要