Efficient spin-to-charge interconversion in Weyl semimetal TaP at room temperature

arxiv(2022)

引用 1|浏览1
暂无评分
摘要
In this paper we present spin-to-charge current conversion properties in the Weyl semimetal TaP by means of the inverse Rashba-Edelstein effect (IREE) with the integration of this quantum material with the ferromagnetic metal Permalloy $(Py=Ni_{81}Fe_{19})$. The spin currents are generated in the Py layer by the spin pumping effect (SPE) from microwave-driven ferromagnetic resonance and are detected by a dc voltage along the TaP crystal, at room temperature. We observe a field-symmetric voltage signal without the contamination of asymmetrical lines due to spin rectification effects observed in studies using metallic ferromagnets. The observed voltage is attributed to spin-to-charge current conversion based on the IREE, made possible by the spin-orbit coupling induced intrinsically by the bulk band structure of Weyl semimetals. The measured IREE coefficient ${\lambda}_{IREE}=(0.30 \pm{0.01})$ nm is two orders of magnitude larger than in graphene and is comparable to or larger than the values reported for some metallic interfaces and for several topological insulators.
更多
查看译文
关键词
ferromagnetic resonance,spin-charge conversion,spin pumping,topological Weyl semimetals
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要