Duality theory for Clifford tensor powers

arxiv(2022)

引用 0|浏览1
暂无评分
摘要
The representation theory of the Clifford group is playing an increasingly prominent role in quantum information theory, including in such diverse use cases as the construction of protocols for quantum system certification, quantum simulation, and quantum cryptography. In these applications, the tensor powers of the defining representation seem particularly important. The representation theory of these tensor powers is understood in two regimes. 1. For odd qudits in the case where the power t is not larger than the number of systems n: Here, a duality theory between the Clifford group and certain discrete orthogonal groups can be used to make fairly explicit statements about the occurring irreps (this theory is related to Howe duality and the eta-correspondence). 2. For qubits: Tensor powers up to t=4 have been analyzed on a case-by-case basis. In this paper, we provide a unified framework for the duality approach that also covers qubit systems. To this end, we translate the notion of rank of symplectic representations to representations of the qubit Clifford group, and generalize the eta correspondence between symplectic and orthogonal groups to a correspondence between the Clifford and certain orthogonal-stochastic groups. As a sample application, we provide a protocol to efficiently implement the complex conjugate of a black-box Clifford unitary evolution.
更多
查看译文
关键词
duality
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要