Oncogene addiction to GNAS in GNAS R201 mutant tumors

Oncogene(2022)

引用 6|浏览13
暂无评分
摘要
The GNAS R201 gain-of-function mutation is the single most frequent cancer-causing mutation across all heterotrimeric G proteins, driving oncogenesis in various low-grade/benign gastrointestinal and pancreatic tumors. In this study, we investigated the role of GNAS and its product Gαs in tumor progression using peritoneal models of colorectal cancer (CRC). G NAS was knocked out in multiple CRC cell lines harboring GNAS R201C/H mutations (KM12, SNU175, SKCO1), leading to decreased cell-growth in 2D and 3D organoid models. Nude mice were peritoneally injected with GNAS -knockout KM12 cells, leading to a decrease in tumor growth and drastically improved survival at 7 weeks. Supporting these findings, GNAS overexpression in LS174T cells led to increased cell-growth in 2D and 3D organoid models, and increased tumor growth in PDX mouse models. GNAS knockout decreased levels of cyclic AMP in KM12 cells, and molecular profiling identified phosphorylation of β-catenin and activation of its targets as critical downstream effects of mutant GNAS signaling. Supporting these findings, chemical inhibition of both PKA and β-catenin reduced growth of GNAS mutant organoids. Our findings demonstrate oncogene addiction to GNAS in peritoneal models of GNAS R201C/H tumors, which signal through the cAMP/PKA and Wnt/β-catenin pathways. Thus, GNAS and its downstream mediators are promising therapeutic targets for GNAS mutant tumors.
更多
查看译文
关键词
Cancer microenvironment,Colorectal cancer,Oncogenes,Medicine/Public Health,general,Internal Medicine,Cell Biology,Human Genetics,Oncology,Apoptosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要