On the Study of Lithium Diffusivity in Lithium Nickel Manganese Cobalt Oxide Cathodes

ECS Meeting Abstracts(2022)

引用 0|浏览11
暂无评分
摘要
Climate change, population growth, and rising fossil fuel prices have encouraged governments and scientists for alternate energy resources. This energy transition requires a high-performance energy storage device to satisfy the high energy and power demand and lithium-ion battery (LIB) is one of the promising one. The performance of these batteries ultimately relies on the properties of their components. In this regard, to meet the high-power demand in high-power applications (such as electric vehicles (EVs) and hybrid EVs), materials with rapid lithium transport are required. Lithium Nickel Manganese Cobalt Oxide (NMC) has attracted scientists’ attentions due to its outstanding performance as a cathode material. Therefore, understanding the effect of various factors on lithium diffusivity in NMC is critical to develop high-performance LIBs for high-power applications. Electrochemical methods such as potentiostatic and galvanostatic intermittent titration techniques (PITT and GITT) have been frequently utilized to experimentally quantify lithium diffusivity in NMC. These techniques need the knowledge of electrode particle shape and dimension, and uncertainty about these parameters leads to substantial errors in predicting the diffusion coefficient. In addition, because these techniques consider the response of the whole electrochemical cell, it is hard to distinguish the effect of different structural factors on Li diffusivity in a single NMC active material. Therefore, an appropriate method still needs to be developed to capture the structural effects on lithium diffusivity in NMC. For this purpose, a multi-level modelling from Density Functional Theory (DFT) to kinetic Monte Carlo (KMC) should be implemented. In this study, we will use DFT to find the ground state energy of NMC at different lithium concentrations and configurations. Also, the minimum energy path of lithium migration and the related activation barrier will be found by Climbing Image-Nudge Elastic Band (CI-NEB) method. Then by implementing the configurational dependent activation barrier into the KMC simulation, the lithium diffusivity will be studied. This atomistic simulation gives insight about the structural effects on lithium diffusivity in NMC to further develop this cathode material for high performance LIBs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要