Influence of Spatial Resolution on Satellite-Based PM2.5 Estimation: Implications for Health Assessment

REMOTE SENSING(2022)

引用 6|浏览4
暂无评分
摘要
Satellite-based PM2.5 estimation has been widely used to assess health impact associated with PM2.5 exposure and might be affected by spatial resolutions of satellite input data, e.g., aerosol optical depth (AOD). Here, based on Multi-Angle Implementation of Atmospheric Correction (MA-IAC) AOD in 2020 over the Yangtze River Delta (YRD) and three PM2.5 retrieval models, i.e., the mixed effects model (ME), the land-use regression model (LUR) and the Random Forest model (RF), we compare these model performances at different spatial resolutions (1, 3, 5 and 10 km). The PM2.5 estimations are further used to investigate the impact of spatial resolution on health assessment. Our cross-validated results show that the model performance is not sensitive to spatial resolution change for the ME and LUR models. By contrast, the RF model can create a more accurate PM2.5 prediction with a finer AOD spatial resolution. Additionally, we find that annual population-weighted mean (PWM) PM2.5 concentration and attributable mortality strongly depend on spatial resolution, with larger values estimated from coarser resolution. Specifically, compared to PWM PM2.5 at 1 km resolution, the estimation at 10 km resolution increases by 7.8%, 22.9%, and 9.7% for ME, LUR, and RF models, respectively. The corresponding increases in mortality are 7.3%, 18.3%, and 8.4%. Our results also show that PWM PM2.5 at 10 km resolution from the three models fails to meet the national air quality standard, whereas the estimations at 1, 3 and 5 km resolutions generally meet the standard. These findings suggest that satellite-based health assessment should consider the spatial resolution effect.
更多
查看译文
关键词
PM2.5 retrieval, AOD, spatial resolution, health assessment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要