Optimizing Automated Kriging to Improve Spatial Interpolation of Monthly Rainfall over Complex Terrain

JOURNAL OF HYDROMETEOROLOGY(2022)

引用 15|浏览6
暂无评分
摘要
Gridded monthly rainfall estimates can be used for a number of research applications, including hydrologic modeling and weather forecasting. Automated interpolation algorithms, such as the "autoKrige" function in R, can produce gridded rainfall estimates that validate well but produce unrealistic spatial patterns. In this work, an optimized geostatistical kriging approach is used to interpolate relative rainfall anomalies, which are then combined with long-term means to develop the gridded estimates. The optimization consists of the following: 1) determining the most appropriate offset (constant) to use when log-transforming data; 2) eliminating poor quality data prior to interpolation; 3) detecting erroneous maps using a machine learning algorithm; and 4) selecting the most appropriate parameterization scheme for fitting the model used in the interpolation. Results of this effort include a 30-yr (1990-2019), highresolution (250-m) gridded monthly rainfall time series for the state of Hawai'i. Leave-one-out cross validation (LOOCV) is performed using an extensive network of 622 observation stations. LOOCV results are in good agreement with observations (R-2 = 0.78; MAE = 55 mm month(-1); -1%); however, predictions can underestimate high rainfall observations (bias = 34 mm month(-1); -1%) due to a well-known smoothing effect that occurs with kriging. This research highlights the fact that validation statistics should not be the sole source of error assessment and that default parameterizations for automated interpolation may need to be modified to produce realistic gridded rainfall surfaces. Data products can be accessed through the Hawai`i Data Climate Portal (HCDP; http://www.hawaii.edu/climate-data-portal).
更多
查看译文
关键词
Rainfall, Machine learning, Interpolation schemes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要