Contrasting anatomical and biochemical controls on mesophyll conductance across plant functional types.

NEW PHYTOLOGIST(2022)

引用 5|浏览9
暂无评分
摘要
Mesophyll conductance (gm ) limits photosynthesis by restricting CO2 diffusion between the substomatal cavities and chloroplasts. Although it is known that gm is determined by both leaf anatomical and biochemical traits, their relative contribution across plant functional types (PFTs) is still unclear. We compiled a dataset of gm measurements and concomitant leaf traits in unstressed plants comprising 563 studies and 617 species from all major PFTs. We investigated to what extent gm limits photosynthesis across PFTs, how gm relates to structural, anatomical, biochemical, and physiological leaf properties, and whether these relationships differ among PFTs. We found that gm imposes a significant limitation to photosynthesis in all C3 PFTs, ranging from 10-30% in most herbaceous annuals to 25-50% in woody evergreens. Anatomical leaf traits explained a significant proportion of the variation in gm (R2  > 0.3) in all PFTs except annual herbs, in which gm is more strongly related to biochemical factors associated with leaf nitrogen and potassium content. Our results underline the need to elucidate mechanisms underlying the global variability of gm . We emphasise the underestimated potential of gm for improving photosynthesis in crops and identify modifications in leaf biochemistry as the most promising pathway for increasing gm in these species.
更多
查看译文
关键词
leaf anatomy, leaf internal CO2 transfer, leaf gas exchange, leaf nutrient content, photosynthetic capacity, photosynthetic limitation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要