Optimal absorption of distributed and conductive heat loads with cryocooler regenerators

IOP Conference Series: Materials Science and Engineering(2022)

引用 1|浏览3
暂无评分
摘要
Abstract The second-stage regenerators of pulse tube refrigerators are routinely used to intercept heat in cryogenic systems; however, optimal methods for heat sinking to the regenerator have not been studied in detail. We investigated intermediate cooling methods by densely instrumenting a commercial, two-stage pulse tube refrigerator with thermometers and heaters. We then experimentally emulated heat loads from common sources such as arrays of electrical cables (a single-point conductive load) and 3He return gas for dilution refrigerators (a distributed load). Optimal methods to absorb these heat loads, whether applied independently or simultaneously, are presented. Our study reveals the importance of understanding the response of the regenerator temperature profle for optimal thermal integration of heat loads along the regenerator, i.e., temperatures and heat fows at all heat sink locations. With optimal utilization of regenerator intermediate cooling, 3He fow rates of up to 2 mmol/s can be cooled from 50 K to 3 K and fully condensed using this pulse tube refrigerator; alternatively, the heat leak from over 100 electrical cables can be cooled across that same temperature span while simultaneously condensing 1.4 mmol/s of 3He.
更多
查看译文
关键词
cryocooler regenerators,conductive heat loads,optimal absorption
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要