(Invited) Light Emission Modulation from Individual Single-Walled Carbon Nanotubes By Chromophore Encapsulation

ECS Meeting Abstracts(2021)

引用 0|浏览2
暂无评分
摘要
The one-dimensional structure of single-walled carbon nanotubes (NT) display optical absorption and near-infrared emission (thanks to van Hove singularities). Chromophore encapsulation into host single-walled carbon nanotubes allows to create hybrid nano-systems with tunable opto-electronic properties. Up to now, we have been confining different kinds of chromophores,1-4 absorbing from the blue/ green (400/500 nm) range (tetracyanoquinodimethane (TNCQ), quaterthiophene derivatives (4T) and tetramethyl-paraphenylenediamine (TMPD)) to the red (700 nm) range (phthalocyanine (MPc)). In addition then can be either electron donor (4T, TMPD) or acceptor (TNCQ). In this study, we investigate, at both the macroscopic and the individual scales, the electronic and the optical properties of our hybrid systems by means of Raman and photoluminescence spectroscopies. Photoluminescence experiments clearly demonstrate changes on the emission properties after encapsulation. The intensities can be increased or reduced depending on the nature of the confined chromophores (electron donor or acceptor) and on the NT diameter. From Raman measurements, a significant charge transfer from the confined dye to the nanotube is evidenced. The main relevant parameters that govern the charge transfer are the nanotube diameter and the nature of the chromophores (electron donor or acceptor). Therefore, Raman and photoluminescence experiments strongly suggest charge transfer between the confined molecules and the nanotubes, leading to a Fermi level shift which governs the radiative de-excitation efficiency. References [1] L. Alvarez et al, J. Phys. Chem. C, 119, (2015), pp. 5203−5210 [2] Y. Almadori et al, J. Phys. Chem. C; 118, (2014), pp. 19462−19468 [3] A. Belhboub et al, J. Phys. Chem. C; 120, (2016), pp. 28802−28807 [4] Y. Almadori et al, Carbon 149, (2019), pp. 772-780
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要