A Novel, Efficient, and Secure Anomaly Detection Technique Using DWU-ODBN for IoT-Enabled Multimedia Communication Systems

Wireless Communications and Mobile Computing(2021)

引用 19|浏览4
暂无评分
摘要
The Internet of Things (IoT) is enhancing our lives in a variety of structures, which consists of smarter cities, agribusiness, and e-healthcare, among others. Even though the Internet of Things has many features with the consumer Internet of Things, the open nature of smart devices and their worldwide connection make IoT networks vulnerable to a variety of assaults. Several approaches focused on attack detection in Internet of Things devices, which has the longest calculation times and the lowest accuracy issues. It is proposed in this paper that an attack detection framework for Internet of Things devices, based on the DWU-ODBN method, be developed to alleviate the existing problems. At the end of the process, the proposed method is used to identify the source of the assault. It comprises steps such as preprocessing, feature extraction, feature selection, and classification to identify the source of the attack. A random oversampler is used to preprocess the input data by dealing with NaN values, categorical features, missing values, and unbalanced datasets before being used to deal with the imbalanced dataset. When the data has been preprocessed, it is then sent to the MAD Median-KS test method, which is used to extract features from the dataset. To categorize the data into attack and nonattack categories, the features are classified using the dual weight updation-based optimal deep belief network (DWU-ODBN) classification technique, which is explained in more detail below. According to the results of the experimental assessment, the proposed approach outperforms existing methods in terms of detecting intrusions and assaults. The proposed work achieves 77 seconds to achieve the attack detection with an accuracy rate of 98.1%.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要