Designing Compact Convolutional Filters for Lightweight Human Pose Estimation

Wireless Communications and Mobile Computing(2021)

引用 1|浏览13
暂无评分
摘要
Existing methods for human pose estimation usually use a large intermediate tensor, leading to a high computational load, which is detrimental to resource-limited devices. To solve this problem, we propose a low computational cost pose estimation network, MobilePoseNet, which includes encoder, decoder, and parallel nonmaximum suppression operation. Specifically, we design a lightweight upsampling block instead of transposing the convolution as the decoder and use the lightweight network as our downsampling part. Then, we choose the high-resolution features as the input for upsampling to reduce the number of model parameters. Finally, we propose a parallel OKS-NMS, which significantly outperforms the conventional NMS in terms of accuracy and speed. Experimental results on the benchmark datasets show that MobilePoseNet obtains almost comparable results to state-of-the-art methods with a low compilation load. Compared to SimpleBaseline, the parameter of MobilePoseNet is only 4%, while the estimation accuracy reaches 98%.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要