Electronic structures and emission properties of typical binary single crystal REB6

Acta Physica Sinica(2022)

引用 0|浏览4
暂无评分
摘要
Binary rare earth hexaborides (REB6) have different rare earth elements with different valence electron distributions, which lead to different strange physical properties and different emission properties. However, in the electron emission properties, whether PrB6, NdB6, SmB6 and GdB6 all have excellent emission properties remains to be further studied, and the physical mechanism affecting their emission properties needs investigating. In this paper, the electronic structures, work functions of typical binary single crystal REB6 (LaB6, CeB6, PrB6, NdB6, SmB6, GdB6) are studied by first principles calculations. The single crystal REB6 are prepared by optical zone melting method, and their thermionic electron emission properties are tested experimentally. The theoretical calculation results show that the typical binary REB6 have large densities of states near the Fermi level. The d-orbitals with broad distributions in conduction bands are beneficial to electron emission. The localized f-orbital electrons in valence bands are not conducive to their electron emission. The theoretical calculations of work functions of typical binary single crystal REB6 (100) surface are consistent with the analyses of their electronic structures. The theoretical calculation values of work functions are ordered as GdB6 (2.27 eV) < CeB6 (2.36 eV) < LaB6 (2.40 eV) < PrB6 (2.58 eV) < SmB6 (2.63 eV) < NdB6 (2.91 eV). The experimental test results of thermionic electron emission of single crystal show that the experimental thermionic electron properties are consistent with the theoretical ones. The LaB6 and CeB6 both have good thermionic and field emission properties, and the GdB6 has excellent field emission properties.
更多
查看译文
关键词
single crystal REB6, first principles, work function, thermionic emission
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要