De Novo Genome Assembly Highlights the Role of Lineage-Specific Gene Duplications in the Evolution of Venom in Fea's Viper (Azemiops feae)

GENOME BIOLOGY AND EVOLUTION(2022)

引用 5|浏览13
暂无评分
摘要
Despite the medical significance to humans and important ecological roles filled by vipers, few high-quality genomic resources exist for these snakes outside of a few genera of pitvipers. Here we sequence, assemble, and annotate the genome of Fea's Viper (Azemiops feae). This taxon is distributed in East Asia and belongs to a monotypic subfamily, sister to the pitvipers. The newly sequenced genome resulted in a 1.56 Gb assembly, a contig N50 of 1.59 Mb, with 97.6% of the genome assembly in contigs >50 Kb, and a BUSCO completeness of 92.4%. We found that A. feae venom is primarily composed of phospholipase A(2) (PLA(2)) proteins expressed by genes that likely arose from lineage-specific PLA(2) gene duplications. Additionally, we show that renin, an enzyme associated with blood pressure regulation in mammals and known from the venoms of two viper species including A. feae, is expressed in the venom gland at comparative levels to known toxins and is present in the venom proteome. The cooption of this gene as a toxin may be more widespread in viperids than currently known. To investigate the historical population demographics of A. feae, we performed coalescent-based analyses and determined that the effective population size has remained stable over the last 100 kyr. This suggests Quaternary glacial cycles likely had minimal influence on the demographic history of A. feae. This newly assembled genome will be an important resource for studying the genomic basis of phenotypic evolution and understanding the diversification of venom toxin gene families.
更多
查看译文
关键词
snake genomics, Viperidae, venom evolution, gene family expansion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要