Energy deposition and melt deformation on the ITER first wall due to disruptions and vertical displacement events

J. Coburn,M. Lehnen,R. A. Pitts, G. Simic,F. J. Artola, E. Thoren,S. Ratynskaia,K. Ibano,M. Brank,L. Kos, R. Khayrutdinov,V. E. Lukash, B. Stein-Lubrano,E. Matveeva, G. Pautasso

NUCLEAR FUSION(2022)

引用 13|浏览28
暂无评分
摘要
An analysis workflow has been developed to assess energy deposition and material damage for ITER vertical displacement events (VDEs) and major disruptions (MD). This paper describes the use of this workflow to assess the melt damage to be expected during unmitigated current quench (CQ) phases of VDEs and MDs at different points in the ITER research plan. The plasma scenarios are modeled using the DINA code with variations in plasma current I (p), disruption direction (upwards or downwards), Be impurity density n (Be), and diffusion coefficient chi. Magnetic field line tracing using SMITER calculates time-dependent, 3D maps of surface power density q (perpendicular to) on the Be-armored first wall panels (FWPs) throughout the CQ. MEMOS-U determines the temperature response, macroscopic melt motion, and final surface topology of each FWP. Effects of Be vapor shielding are included. Scenarios at the baseline combination of I (p) and toroidal field (15 MA/5.3 T) show the most extreme melt damage, with the assumed n (Be) having a strong impact on the disruption duration, peak q (perpendicular to) and total energy deposition to the first wall. The worst-cases are upward 15 MA VDEs and MDs at lower values of n (Be), with q (perpendicular to,max) = 307 MW m(-2) and maximum erosion losses of similar to 2 mm after timespans of similar to 400-500 ms. All scenarios at 5 MA avoided melt damage, and only one 7.5 MA scenario yields a notable erosion depth of 0.25 mm. These results imply that disruptions during 5 MA, and some 7.5 MA, operating scenarios will be acceptable during the pre-fusion power operation phases of ITER. Preliminary analysis shows that localized melt damage for the worst-case disruption should have a limited impact on subsequent stationary power handling capability.
更多
查看译文
关键词
plasma disruptions, plasma facing components, heat loads, material erosion, ITER
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要