Imaging the Kanto Basin seismic basement with earthquake and noise autocorrelation functions

GEOPHYSICAL JOURNAL INTERNATIONAL(2022)

引用 2|浏览7
暂无评分
摘要
Sedimentary basins can strongly amplify seismic waves from earthquakes. To better predict future ground motions, detailed knowledge of the sediment thickness and internal structure of basins is required. We image the sediment-to-bedrock interface of the Kanto Basin in Japan using the P-wave reflectivity response from earthquake and ambient seismic noise autocorrelation functions (ACFs) at 286 shallow borehole stations. Earthquake ACFs are computed using P-wave records from 50 M-w 6+ teleseismic events. Noise ACFs are obtained using 1 month of continuous data. Both methods are used to retrieve P-wave traveltimes between the surface and the bedrock interface and map the basin basement geometry. Our prediction of the basement depth agrees generally well with that from a reference velocity model, except for smoother variations in the central part of the basin. Using full-wavefield simulations, we show that the nature of the autocorrelated wavefield has a significant impact on the shape of the ACF waveforms and that earthquake ACFs yield more accurate results in the Kanto Basin.
更多
查看译文
关键词
Japan, Body waves, Seismic interferometry, Seismic noise, Wave propagation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要