Enabling cooperative adaptive cruise control on strings of vehicles with heterogeneous dynamics and powertrains

VEHICLE SYSTEM DYNAMICS(2023)

引用 4|浏览2
暂无评分
摘要
Recent studies have shown that positive impact of Cooperative Adaptive Cruise Control (CACC) can only be guaranteed as market penetration rate increases. Removing the string homogeneity constraint is essential to encourage widespread adoption. In this work, a hierarchical architecture is proposed to enable CACC on vehicles with not only mixed dynamics but also different powertrain types. A low-level layer deals with the vehicle and powertrain dynamics to provide accurate and consistent reference speed tracking response. The high-level layer uses: (1) a Linear Parameter Varying feedback system to provide loop stability, robustness and enforce a variable time gap policy and (2) a feedforward system that processes Vehicle-to-Vehicle information to enhance string stability and response bandwidth, by dealing with the string heterogeneity. A gap management strategy is built on top of the CACC architecture to handle gap setting changes or cut-in/out situations, via a dynamics constrained time gap trajectory planning algorithm. The proposed work has been designed, developed and validated on three different real passenger vehicles on public highways and test tracks, showing the potential of the proposed algorithm to enable robust string stable CACC, despite the different dynamics and powertrains considered.
更多
查看译文
关键词
Cooperative adaptive cruise control, connected automated vehicles, heterogeneous strings, robust optimal control, vehicle dynamics control
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要