Biobased polymer SF/PHBV composite nanofiber membranes as filtration and protection materials

JOURNAL OF THE TEXTILE INSTITUTE(2023)

引用 1|浏览1
暂无评分
摘要
With the emergence of the COVID-19, masks and protective clothing have been used in huge quantities. A large number of non-degradable materials have severely damaged the ecological environment. Now, people are increasingly pursuing the use of environmentally friendly materials to replace traditional chemical materials. Silk fibroin (SF) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) have received increasing attention because of their unique biodegradability and biocompatibility. In this paper, a series of biodegradable SF/PHBV nanofiber membranes with different PHBV content were fabricated by using electrospinning technology. The morphology of the electrospun SF/PHBV composite nanofiber was observed by scanning electron microscopy (SEM). The average diameters of the pure SF, SF/PHBV (4/1), SF/PHBV (3/1), and SF/PHBV (2/1) nanofibers were 55.16 +/- 12.38 nm, 75.93 +/- 21.83 nm, 69.35 +/- 21.55 nm, and 61.40 +/- 12.31 nm, respectively. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) were used to explore the microstructure of the electrospun SF/PHBV composite nanofiber. The crystallization ability of the composite nanofiber was greatly improved with the addition of PHBV. The results of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) indicated that the thermal stability of SF was better than PHBV obviously, so SF could improve the thermal stability of the composite materials within a certain range. The mechanical properties of the electrospun nanofiber membranes were evaluated by using a universal testing machine. In general, the elongation of the composite nanofiber membranes decreased, and the breaking strength increased with the addition of PHBV. The small pore size of the nanofiber membranes ensured that they had good application prospects in the field of filtration and protection. When the spinning time was 1 h, the filtration efficiency of SF/PHBV/PLA composite materials remained above 95%.
更多
查看译文
关键词
Electrospinning, SF, PHBV, membranes, mechanical properties, pore size and distribution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要