Topological Surface Acoustic Waves

PHYSICAL REVIEW APPLIED(2021)

引用 30|浏览12
暂无评分
摘要
Topological materials for classical waves, e.g., electromagnetic and acoustic waves, have attracted growing interest, mainly due to the robustness, low loss, and new artificial degree of freedom conferred by their boundaries. Surface acoustic waves (SAWs), as widely used information carriers of microdevice relevance, are ubiquitous in today's wireless communication and sensing networks. Herein, we report the implementation of a SAW topological insulator based on a monolithically integrated platform. By using a miniature acoustic resonator array working tens of megahertz on a piezoelectric half-space, we successfully endow electrically pumped Rayleigh-type SAWs with the "spin-momentum locking" feature, enabling solid-state acoustic waves on the "one-dimensional interface of the two-dimensional surface on the three-dimensional volume" detour arbitrarily and pass through defects and intersections with much smaller losses than those incurred with any other solutions. These revolutionary topological SAWs may open an avenue for monolithic electronic-(photonic)-phononic circuits with ultrahigh performance and advanced functionalities in, e.g., future mobile communicating, sensing, and quantum-information processing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要