Monocyte, neutrophil, and whole blood transcriptome dynamics following ischemic stroke

BMC medicine(2023)

引用 4|浏览25
暂无评分
摘要
Background After ischemic stroke (IS), peripheral leukocytes infiltrate the damaged region and modulate the response to injury. Peripheral blood cells display distinctive gene expression signatures post-IS and these transcriptional programs reflect changes in immune responses to IS. Dissecting the temporal dynamics of gene expression after IS improves our understanding of immune and clotting responses at the molecular and cellular level that are involved in acute brain injury and may assist with time-targeted, cell-specific therapy. Methods The transcriptomic profiles from peripheral monocytes, neutrophils, and whole blood from 38 ischemic stroke patients and 18 controls were analyzed with RNA-seq as a function of time and etiology after stroke. Differential expression analyses were performed at 0–24 h, 24–48 h, and >48 h following stroke. Results Unique patterns of temporal gene expression and pathways were distinguished for monocytes, neutrophils, and whole blood with enrichment of interleukin signaling pathways for different time points and stroke etiologies. Compared to control subjects, gene expression was generally upregulated in neutrophils and generally downregulated in monocytes over all times for cardioembolic, large vessel, and small vessel strokes. Self-organizing maps identified gene clusters with similar trajectories of gene expression over time for different stroke causes and sample types. Weighted Gene Co-expression Network Analyses identified modules of co-expressed genes that significantly varied with time after stroke and included hub genes of immunoglobulin genes in whole blood. Conclusions Altogether, the identified genes and pathways are critical for understanding how the immune and clotting systems change over time after stroke. This study identifies potential time- and cell-specific biomarkers and treatment targets.
更多
查看译文
关键词
Blood,Gene expression,Hub genes,Ischemic stroke,Monocytes,Neutrophils,Pathway analyses,RNA-seq,Time course,Transcriptomics,WGCNA
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要