GW190425: Observation of a Compact Binary Coalescence with Total Mass â‹1⁄4 3.4 M o

B. P. Abbott,R. Abbott, T. D. Abbott,S. Abraham, F. Acernese,K. Ackley, C. Adams,R. X. Adhikari,V. B. Adya, C. Affeldt, M. Agathos,K. Agatsuma,N. Aggarwal,O. D. Aguiar, L. Aiello,A. Ain,P. Ajith,G. Allen, A. Allocca,M. A. Aloy,P. A. Altin,A. Amato,S. Anand, A. Ananyeva,S. B. Anderson, W. G. Anderson, S. V. Angelova,S. Antier, S. Appert, K. Arai,M. C. Araya, J. S. Areeda, M. Arène, N. Arnaud, S. M. Aronson,K. G. Arun,S. Ascenzi,G. Ashton, S. M. Aston, P. Astone, F. Aubin, P. Aufmuth, K. AultONeal,C. Austin, V. Avendano, A. Avila-Alvarez, S. Babak, P. Bacon,F. Badaracco, M. K. M. Bader, S. Bae, J. Baird,P. T. Baker, F. Baldaccini, G. Ballardin, S. W. Ballmer, A. Bals,S. Banagiri, J. C. Barayoga, C. Barbieri, S. E. Barclay,B. C. Barish, D. Barker, K. Barkett, S. Barnum,F. Barone, B. Barr,L. Barsotti, M. Barsuglia,D. Barta, J. Bartlett,I. Bartos,R. Bassiri, A. Basti, M. Bawaj, J. C. Bayley,A. C. Baylor,M. Bazzan, B. Bécsy,M. Bejger, I. Belahcene,A. S. Bell, D. Beniwal, M. G. Benjamin,B. K. Berger, G. Bergmann,S. Bernuzzi,C. P. L. Berry, D. Bersanetti, A. Bertolini, J. Betzwieser, R. Bhandare, J. Bidler, E. Biggs, I. A. Bilenko,S. A. Bilgili, G. Billingsley,R. Birney,O. Birnholtz,S. Biscans, M. Bischi,S. Biscoveanu,A. Bisht, M. Bitossi,M. A. Bizouard, J. K. Blackburn, J. Blackman, C. D. Blair, D. G. Blair, R. M. Blair,S. Bloemen, F. Bobba,N. Bode, M. Boer, Y. Boetzel, G. Bogaert,F. Bondu,R. Bonnand, P. Booker, B. A. Boom, R. Bork,V. Boschi, S. Bose, V. Bossilkov, J. Bosveld, Y. Bouffanais, A. Bozzi, C. Bradaschia,P. R. Brady, A. Bramley,M. Branchesi, J. E. Brau,M. Breschi, T. Briant, J. H. Briggs, F. Brighenti, A. Brillet, M. Brinkmann, P. Brockill, A. F. Brooks,J. Brooks,D. D. Brown, S. Brunett,A. Buikema,T. Bulik, H. J. Bulten,A. Buonanno,D. Buskulic, C. Buy,R. L. Byer,M. Cabero,L. Cadonati,G. Cagnoli, C. Cahillane,J. Calderón Bustillo, T. A. Callister, E. Calloni, J. B. Camp, W. A. Campbell,M. Canepa,K. C. Cannon, H. Cao,J. Cao, G. Carapella, F. Carbognani, S. Caride, M. F. Carney,G. Carullo,J. Casanueva Diaz, C. Casentini, S. Caudill,M. Cavaglià, F. Cavalier, R. Cavalieri,G. Cella,P. Cerdá-Durán, E. Cesarini, O. Chaibi, K. Chakravarti, S. J. Chamberlin, M. Chan,S. Chao, P. Charlton,E. A. Chase,E. Chassande-Mottin,D. Chatterjee, M. Chaturvedi,K. Chatziioannou, B. D. Cheeseboro, H. Y. Chen,X. Chen, Y. Chen,H.-P. Cheng, C. K. Cheong,H. Y. Chia,F. Chiadini,A. Chincarini,A. Chiummo,G. Cho,H. S. Cho, M. Cho,N. Christensen, Q. Chu, S. Chua, K. W. Chung, S. Chung,G. Ciani,A. A. Ciobanu, R. Ciol, F. Cipriano, A. Cirone, F. Clara, J. A. Clark, P. Clearwater, F. Cleva,E. Coccia,P.-F. Cohadon, D. Cohen,M. Colleoni,C. G. Collette, C. Collins, M. Colpi,L. R. Cominsky, M. Constancio, L. Conti, S. J. Cooper, P. Corban,T. R. Corbitt, I. Cordero-Carrión, S. Corezzi,K. R. Corley,N. Cornish, D. Corre,A. Corsi, S. Cortese,C. A. Costa,R. Cotesta,M. W. Coughlin, S. B. Coughlin, J.-P. Coulon,S. T. Countryman,P. Couvares, P. B. Covas, E. E. Cowan, D. M. Coward, M. J. Cowart, D. C. Coyne,R. Coyne,J. D. E. Creighton, T. D. Creighton,J. Cripe, M. Croquette, S. G. Crowder, T. J. Cullen, A. Cumming, L. Cunningham,E. Cuoco,T. Dal Canton,G. Dálya, D B., Angelo, S. L. Danilishin, D S., Antonio, K. Danzmann, A. Dasgupta, C. F. Da Silva Costa, L. E. H. Datrier, V. Dattilo, I. Dave, M. Davier,D. Davis,E. J. Daw, D. DeBra, M. Deenadayalan, J. Degallaix,M. De Laurentis, S. Deléglise, N. De Lillo,W. Del Pozzo, L. M. DeMarchi,N. Demos,T. Dent,R. De Pietri,R. De Rosa, C. De Rossi, R. DeSalvo,O. de Varona, S. Dhurandhar, M. C. Díaz, T. Dietrich,L. Di Fiore, C. DiFronzo,C. Di Giorgio,F. Di Giovanni,M. Di Giovanni, T. Di Girolamo,A. Di Lieto, B. Ding, S. Di Pace,I. Di Palma,F. Di Renzo,A. K. Divakarla,A. Dmitriev, Z. Doctor, F. Donovan,K. L. Dooley, S. Doravari, I. Dorrington, T. P. Downes, M. Drago, J. C. Driggers, Z. Du, J.-G. Ducoin, R. Dudi,P. Dupej,O. Durante,S. E. Dwyer, P. J. Easter, G. Eddolls, T. B. Edo, P. Ehrens,J. Eichholz, S. S. Eikenberry, M. Eisenmann, R. A. Eisenstein, L. Errico,R. C. Essick, H. Estelles, D. Estevez,Z. B. Etienne, T. Etzel,M. Evans,T. M. Evans, V. Fafone,S. Fairhurst, X. Fan, S. Farinon, B. Farr,W. M. Farr, E. J. Fauchon-Jones,M. Favata,M. Fays,M. Fazio, C. Fee, J. Feicht, M. M. Fejer, F. Feng, A. Fernandez-Galiana,I. Ferrante,E. C. Ferreira,T. A. Ferreira,F. Fidecaro, I. Fiori, D. Fiorucci,M. Fishbach,R. P. Fisher, J. M. Fishner, R. Fittipaldi, M. Fitz-Axen, V. Fiumara, R. Flaminio, M. Fletcher, E. Floden, E. Flynn,H. Fong,J. A. Font, P. W. F. Forsyth, J.-D. Fournier,Francisco Hernandez Vivanco,S. Frasca, F. Frasconi,Z. Frei,A. Freise,R. Frey, V. Frey, P. Fritschel, V. V. Frolov,G. Fronzè,P. Fulda, M. Fyffe, H. A. Gabbard,B. U. Gadre, S. M. Gaebel, J. R. Gair, R. Gamba,L. Gammaitoni, S. G. Gaonkar, C. García-Quirós, F. Garu, B. Gateley,S. Gaudio, G. Gaur,V. Gayathri,G. Gemme,E. Genin,A. Gennai,D. George,J. George, R. George,L. Gergely,S. Ghonge,Abhirup Ghosh, Archisman Ghosh, S. Ghosh,B. Giacomazzo, J. A. Giaime, K. D. Giardina,D. R. Gibson, K. Gill, L. Glover, J. Gniesmer, P. Godwin, E. Goetz, R. Goetz,B. Goncharov,G. González,J. M. Gonzalez Castro, A. Gopakumar, S. E. Gossan,M. Gosselin, R. Gouaty, B. Grace, A. Grado, M. Granata, A. Grant,S. Gras, P. Grassia, C. Gray, R. Gray, G. Greco,A. C. Green,R. Green,E. M. Gretarsson,A. Grimaldi, S. J. Grimm

semanticscholar(2021)

引用 0|浏览9
暂无评分
摘要
On 2019 April 25, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9. The Virgo detector was also taking data that did not contribute to detection due to a low signal-to-noise ratio, but were used for subsequent parameter estimation. The 90% credible intervals for the component masses range from1.12 to M 2.52  (1.46– M 1.87  if we restrict the dimensionless component spin magnitudes to be smaller than 0.05). These mass parameters are consistent with the individual binary components being neutron stars. However, both the source-frame chirp mass + M 1.44 0.02 0.02  and the total mass + M 3.4 0.1 0.3  of this system are significantly larger than those of any other known binary neutron star (BNS) system. The possibility that one or both binary components of the system are black holes cannot be ruled out from gravitational-wave data. We discuss possible origins of the system based on its inconsistency with the known Galactic BNS population. Under the assumption that the signal was produced by a BNS coalescence, the local rate of neutron star mergers is updated to 250–2810 Gpc yr 3 1. Unified Astronomy Thesaurus concepts: Neutron stars (1108); Gravitational waves (678)
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要