Semi-analytic spectral fitting: simultaneously modelling the mass accumulation and chemical evolution in MaNGA spiral galaxies

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY(2022)

引用 9|浏览6
暂无评分
摘要
We develop a novel semi-analytic spectral fitting approach to quantify the star formation histories (SFHs) and chemical enrichment histories (ChEHs) of individual galaxies. We construct simple yet general chemical evolution models that account for gas inflow and outflow processes as well as star formation, to investigate the evolution of merger-free star-forming systems. These models are fitted directly to galaxies' absorption-line spectra, while their emission lines are used to constrain current gas phase metallicity and star formation rate. We apply this method to spiral galaxies selected from the SDSS-IV Mapping Nearby Galaxies at Apache Point Observatory survey. By fitting the co-added absorption-line spectra for each galaxy, and using the emission-line constraints on present-day metallicity and star formation, we reconstruct both the SFHs and the ChEHs for all objects in the sample. We can use these reconstructions to obtain archaeological measures of derived correlations such as the mass-metallicity relation at any redshift, which compare favourably with direct observations. We find that both the SFHs and ChEHs have strong mass dependence: massive galaxies accumulate their stellar masses and become enriched earlier. This mass dependence causes the observed flattening of the mass-metallicity relation at lower redshifts. The model also reproduces the observed gas-to-stellar mass ratio and its mass dependence. Moreover, we are able to determine that more massive galaxies have earlier gas infall times and shorter infall time-scales, and that the early chemical enrichment of low-mass galaxies is suppressed by strong outflows, while outflows are not very significant in massive galaxies.
更多
查看译文
关键词
galaxies: evolution, galaxies: formation, galaxies: fundamental parameters, galaxies: stellar content
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要