Deterministic Low-Diameter Decompositions for Weighted Graphs and Distributed and Parallel Applications.

IEEE Annual Symposium on Foundations of Computer Science (FOCS)(2022)

引用 11|浏览7
暂无评分
摘要
This paper presents new deterministic and distributed low-diameter decomposition algorithms for weighted graphs. In particular, we show that if one can efficiently compute approximate distances in a parallel or a distributed setting, one can also efficiently compute low-diameter decompositions. This consequently implies solutions to many fundamental distance based problems using a polylogarithmic number of approximate distance computations. Our low-diameter decomposition generalizes and extends the line of work starting from [Rozho\v{n}, Ghaffari STOC 2020] to weighted graphs in a very model-independent manner. Moreover, our clustering results have additional useful properties, including strong-diameter guarantees, separation properties, restricting cluster centers to specified terminals, and more. Applications include: -- The first near-linear work and polylogarithmic depth randomized and deterministic parallel algorithm for low-stretch spanning trees (LSST) with polylogarithmic stretch. Previously, the best parallel LSST algorithm required $m \cdot n^{o(1)}$ work and $n^{o(1)}$ depth and was inherently randomized. No deterministic LSST algorithm with truly sub-quadratic work and sub-linear depth was known. -- The first near-linear work and polylogarithmic depth deterministic algorithm for computing an $\ell_1$-embedding into polylogarithmic dimensional space with polylogarithmic distortion. The best prior deterministic algorithms for $\ell_1$-embeddings either require large polynomial work or are inherently sequential. Even when we apply our techniques to the classical problem of computing a ball-carving with strong-diameter $O(\log^2 n)$ in an unweighted graph, our new clustering algorithm still leads to an improvement in round complexity from $O(\log^{10} n)$ rounds [Chang, Ghaffari PODC 21] to $O(\log^{4} n)$.
更多
查看译文
关键词
weighted graphs,low-diameter
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要