Microtubules promote the non-cell autonomous action of microRNAs by inhibiting their cytoplasmic loading onto ARGONAUTE1 in Arabidopsis

Developmental Cell(2022)

引用 19|浏览5
暂无评分
摘要
Mobile microRNAs (miRNAs) serve as local and long-distance signals in the developmental patterning and stress responses in plants. However, mechanisms governing the non-cell autonomous activities of miRNAs remain elusive. Here, we show that mutations that disrupt microtubule dynamics are specifically defective for the non-cell autonomous actions of mobile miRNAs, including miR165/6 that is produced in the endodermis and moves to the vasculature to pattern xylem cell fates in Arabidopsis roots. We show that KTN1, a subunit of a microtubule-severing enzyme, is required in source cells to inhibit the loading of miR165/6 into ARGONUATE1 (AGO1), which is cell autonomous, to enable the miRNA to exit the cell. Microtubule disruption enhances the association of miR165/6 with AGO1 in the cytoplasm. These findings suggest that although cell-autonomous miRNAs load onto AGO1 in the nucleus, the cytoplasmic AGO1 loading of mobile miRNAs is a key step regulated by microtubules to promote the range of miRNA cell-to-cell movement.
更多
查看译文
关键词
Katanin,MOR1,microtubule,microRNA,non-cell autonomy,AGO1 loading,miR165/6,cell-to-cell movement,systemic movement
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要