A Mathematical Framework for Transformations of Physical Processes

arxiv(2023)

引用 0|浏览5
暂无评分
摘要
We observe that the existence of sequential and parallel composition supermaps in higher order physics can be formalised using enriched category theory. Encouraged by physically relevant examples such as unitary supermaps and layers within higher order causal categories (HOCCs), we treat the modelling of higher order physical theories with enriched monoidal categories in analogy with the modelling of physical theories are with monoidal categories. We use the enriched monoidal setting to construct a suitable definition of structure preserving map between higher order physical theories via the Grothendieck construction. We then show that the convenient feature of currying in higher order physical theories can be seen as a consequence of combining the primitive assumption of the existence of parallel and sequential composition supermaps with an additional feature of linking. In a second application we use our definition of structure preserving map to show that categories containing infinite towers of enriched monoidal categories with full and faithful structure preserving maps between them inevitably lead to closed monoidal structures. The aim of the proposed definitions is to step towards providing a broad framework for the study and comparison of novel causal structures in quantum theory, and, more broadly, a paradigm of physical theory where static and dynamical features are treated in a unified way.
更多
查看译文
关键词
transformations,mathematical framework,processes,physical
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要