Altered excitatory and decreased inhibitory transmission in the prefrontal cortex of male mice with early developmental disruption to the ventral hippocampus.

Cerebral cortex (New York, N.Y. : 1991)(2023)

引用 0|浏览4
暂无评分
摘要
Ventral hippocampal (vHPC)-prefrontal cortical (PFC) pathway dysfunction is a core neuroimaging feature of schizophrenia. However, mechanisms underlying impaired connectivity within this pathway remain poorly understood. The vHPC has direct projections to the PFC that help shape its maturation. Here, we wanted to investigate the effects of early developmental vHPC perturbations on long-term functional PFC organization. Using whole-cell recordings to assess PFC cellular activity in transgenic male mouse lines, we show early developmental disconnection of vHPC inputs, by excitotoxic lesion or cell-specific ablations, impairs pyramidal cell firing output and produces a persistent increase in excitatory and decrease in inhibitory synaptic inputs onto pyramidal cells. We show this effect is specific to excitatory vHPC projection cell ablation. We further identify PV-interneurons as a source of deficit in inhibitory transmission. We find PV-interneurons are reduced in density, show a reduced ability to sustain high-frequency firing, and show deficits in excitatory inputs that emerge over time. We additionally show differences in vulnerabilities to early developmental vHPC disconnection, wherein PFC PV-interneurons but not pyramidal cells show deficits in NMDA receptor-mediated current. Our results highlight mechanisms by which the PFC adapts to early developmental vHPC perturbations, providing insights into schizophrenia circuit pathology.
更多
查看译文
关键词
animal model,dysconnectivity,electrophysiology,parvalbumin interneuron,schizophrenia
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要