Numerical heat transfer modeling and climate adaptation analysis of vacuum-photovoltaic glazing

APPLIED ENERGY(2022)

引用 9|浏览9
暂无评分
摘要
Vacuum-photovoltaic (VPV) glazing has attracted much attention due to its excellent thermal insulation performance and its ability to utilize solar energy. However, few simulation models have been established based on actual products and rarely have been validated by experiments. In this paper, a four-layer CdTe-based VPV glazing was developed and the corresponding numerical heat transfer model was established with the integration of a dynamic power generation model. The numerical model was then validated against both the results from the WINDOW program and a guarded hot box experiment. Afterward, the validated model was employed to analyze the energy and power generation performance of the VPV glazing in diverse climate zones in China with Harbin, Beijing, Changsha, Guangzhou, and Kunming used as representative cities. The numerical simulation results indicate that the U-value of the proposed VPV glazing is 0.89 W/(m(2).K), which is in good agreement with the experimental results. Compared with a normal double glazing, the average energy reductions achieved with VPV glazing in air conditioning seasons are 128 kWh/m(2), 23 kWh/m(2), 45 kWh/m(2), and 52 kWh/m(2) in Harbin, Beijing, Changsha, and Guangzhou, respectively. In addition, the average annual power outputs of VPV glazing in Harbin, Beijing, Changsha, Guangzhou, and Kunming are 47 kWh/m(2), 48 kWh/m(2), 34 kWh/m(2), 36 kWh/m(2), and 45 kWh/m(2), respectively. The numerical model developed in this study can be used for energy-saving potential analysis and optimization of VPV glazing in different meteorological conditions, the results of which could provide guidance for the effective application of VPV glazing.
更多
查看译文
关键词
Vacuum-photovoltaic glazing,Numerical model,Heat transfer,Climate adaptation analysis,Electrical power output
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要