ZIF-8-derived Three-dimensional Silicon-carbon Network Composite for High-performance Lithium-ion Batteries

Journal of Inorganic Materials(2022)

引用 8|浏览8
暂无评分
摘要
Lithium-ion batteries (LIBs) are widely applied to various portable electronic devices and new energy vehicles. However, the traditional graphite anode with low theoretical capacity (372 mAh/g) is unable to meet the need of the rapid development of economy and society. Herein, a zinc-based metallic organic framework ( ZIF-8) derived three- dimensional network carbon coated silicon (Si@NC) composite was designed for lithium-ion battery. Firstly, the surface of nano-silicon was chemical modified; secondly, small size ZIF-8 was in situ grown on the silicon surface to form Si@ZIF-8; finally, the three- dimensional network Si@NC composite was obtained by carbonization. Results show that the three-dimensional network porous structure of the Si@NC composite not only limits the volume expansion of silicon, but greatly improves the conductivity of the materials, exhibiting excellent cycle stability and outstanding rate performance. As a result, a discharge specific capacity of 760 mAh/g is maintained at a high current density of 5 A/g. Using commercial material as cathode and Si@NC as anode, the assembled full LIBs demonstrate a capacity retention of 60.4% at 0.4C (1C =160 mA/g) for 50 cycles. These results indicate that the as- synthesized three-dimensional network porous structure of Si@NC composite has a potential practical application for LIBs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要