Plasmon-enhanced photoluminescence from MoS2 monolayer with topological insulator nanoparticle

NANOPHOTONICS(2022)

引用 6|浏览5
暂无评分
摘要
Topological insulators (TI), as a kind of fantastic nanomaterial with excellent electrical and optical properties, have attracted particular attention due to the promising applications in optoelectronic devices. Herein, we experimentally demonstrated the interaction between light and molybdenum disulfide (MoS2) monolayer with an antimony telluride (Sb2Te3) TI nanoparticle. It was found that photoluminescence (PL) emission and Raman scattering signal can be boosted by 5 and 8 folds in MoS2 monolayer integrated with the TI nanoparticle, respectively. The measured and simulated dark-field scattering spectra illustrated that the enhancement of light-matter interaction could be derived from the generation of localized surface plasmons on the TI nanoparticle with distinctly boosted electric field. We also found that there exists a redshift of 5 nm for the enhanced PL peak, which could be attributed to the formation of trions in MoS2 induced by plasmon doping. This work would provide a new pathway for the applications of TI nanoparticles in the optoelectronics, especially light-matter interaction enhancement.
更多
查看译文
关键词
light-matter interaction,localized surface plasmons,photoluminescence,topological insulators
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要