Human iPSC-Derived RPE and Retinal Organoids Reveal Impaired Alternative Splicing of Genes Involved in Pre-mRNA Splicing in PRPF31 Autosomal Dominant Retinitis Pigmentosa Type 11

Social Science Research Network(2018)

引用 0|浏览6
暂无评分
摘要
Mutations in pre-mRNA processing factors (PRPFs) cause 40% of autosomal dominant retinitis pigmentosa (RP), but it is unclear why mutations in ubiquitously expressed PRPFs cause retinal disease. To understand the molecular basis of this phenotype, we have generated RP type 11 (PRPF31-mutated) patient-specific retinal organoids and retinal pigment epithelium (RPE) from induced pluripotent stem cells (iPSC). Impaired alternative splicing of genes encoding pre-mRNA splicing proteins occurred in patient-specific retinal cells and Prpf31 /- mouse retinae, but not fibroblasts and iPSCs, providing mechanistic insights into retinal-specific phenotypes of PRPFs. RPE was the most affected, characterised by loss of apical-basal polarity, reduced trans-epithelial resistance, phagocytic capacity, microvilli, and cilia length and incidence. Disrupted cilia morphology was observed in patient-derived-photoreceptors that displayed progressive features associated with degeneration and cell stress. In situ gene-editing of a pathogenic mutation rescued key structural and functional phenotypes in RPE and photoreceptors, providing proof-of-concept for future therapeutic strategies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要