Spectral Emissivity of Phonolite Lava at High Temperature

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING(2022)

引用 6|浏览14
暂无评分
摘要
The rheology and thermodynamical evolution of magma, either in reservoirs, conduits, or at the surface, are governed by temperature. To determine the field temperature, remote-sensing methods based on measuring the infrared radiance are widely applied, but they are subject to assumptions and caveats that can propagate into large uncertainties. This is related to the poor knowledge of one of the most critical parameters, namely the spectral emissivity. In this work, we aim at filling this gap through in situ spectral emissivity measurements performed over wide temperature (700-1600 K) and spectral ranges (1.25-25 mu m) on two representative phonolitic compositions from Erebus (Antartica) and Teide (Spain) volcanoes. The laboratory spectra allow to determine precisely spectral emissivity in the thermal infrared (TIR), middle infrared (MIR), and shortwave infrared (SWIR) ranges. The results reveal the complexity and contrasted behavior of the radiative properties of the two rocks melts, despite their broadly similar composition. The spectral emissivity varies significantly as a function of temperature, composition, crystallinity, thickness, and thermal history. Altogether, the data reveal that emissivity cannot be considered as a constant value and question previous arguments that active lava always has lower emissivity than frozen lava. Finally, the laboratory-measured values of spectral emissivity were used to refine the temperature of Erebus lava lake gathered from previous remote-sensing methods.
更多
查看译文
关键词
Temperature measurement,Temperature distribution,Remote sensing,Volcanoes,Glass,Rocks,Uncertainty,Emissivity,phonolite lava,radiative transfer,remote sensing,temperature measurement,thermal infrared (TIR)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要