On the Modeling and Optimization of Anti-Vibration Gloves for Hand-Arm Vibration Control

Volume 2: Modeling and Control of Engine and Aftertreatment Systems; Modeling and Control of IC Engines and Aftertreatment Systems; Modeling and Validation; Motion Planning and Tracking Control; Multi-Agent and Networked Systems; Renewable and Smart Energy Systems; Thermal Energy Systems; Uncertain Systems and Robustness; Unmanned Ground and Aerial Vehicles; Vehicle Dynamics and Stability; Vibrations: Modeling, Analysis, and Control(2019)

引用 0|浏览0
暂无评分
摘要
Abstract Various studies in hand-arm vibrations have shown that isolators in the form of anti-vibration (AV) gloves are effective to reduce unwanted vibrations, transmitted to the human hand, from machines and hand tools. However, most of these studies are based on experimental or numerical analysis and hence, the level of effectiveness and optimum values of the glove’s properties remain unclear. In this work, we analytically study the dynamics of hand-arm vibrations with and without a glove using the harmonic balance method. The considered analytical models for the hand-arm vibration comprise of lumped multi-degree of freedom system. The hand-tool interactions are modeled as linear spring and damper system for simplicity and accordingly, we obtain the equations governing the dynamics of the human-hand system. We perform parametric analysis using this bio-mechanical model of the hand-arm vibrations with and without a glove. The parametric analysis on the relative transmissibility (i.e., the ratio of transmissibilities with glove to without glove) shows the dependence of the transmissibility on the glove parameters. We observe that the effect of glove parameters on the relative transmissibility is not monotonous for the studied frequency range. This observation further motivates us to perform optimization of the glove parameters to minimize the overall transmissibility.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要