Optimal Sensor Configuration for Fatigue Life Prediction in Structural Applications

Volume 1: Advanced Driver Assistance and Autonomous Technologies; Advances in Control Design Methods; Advances in Robotics; Automotive Systems; Design, Modeling, Analysis, and Control of Assistive and Rehabilitation Devices; Diagnostics and Detection; Dynamics and Control of Human-Robot Systems; Energy Optimization for Intelligent Vehicle Systems; Estimation and Identification; Manufacturing(2019)

引用 1|浏览0
暂无评分
摘要
Abstract Structural health monitoring is spreading widely across engineering domains. Its added value is not restricted to observing structural behavior, but crosses over to enabling the assessment of structural integrity under varying operating conditions. Damage prognosis is one vital demand from structural health monitoring solutions. Many methods have been developed to update damage predictions based on sensor data, nonetheless the selection and positioning of sensors to alleviate the prediction errors remains a question under investigation. In this work, an optimal sensor placement method is proposed for fatigue damage prediction in structures. An optimization problem is formulated to minimize the a-posteriori damage estimation error based on a Kalman filter. The derivation of the objective function is presented, along with a discussion of algorithm-related issues. Finally, the mentioned damage prediction approach is applied to two structures to verify the adequacy of the sensor configurations proposed by the method.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要