Structure-Aware Multimodal Deep Learning for Drug-Protein Interaction Prediction

JOURNAL OF CHEMICAL INFORMATION AND MODELING(2022)

引用 20|浏览52
暂无评分
摘要
Identifying drug-protein interactions (DPIs) is crucial in drug discovery, and a number of machine learning methods have been developed to predict DPIs. Existing methods usually use unrealistic data sets with hidden bias, which will limit the accuracy of virtual screening methods. Meanwhile, most DPI prediction methods pay more attention to molecular representation but lack effective research on protein representation and high-level associations between different instances. To this end, we present the novel structure-aware multimodal deep DPI prediction model, STAMP-DPI, which was trained on a curated industry-scale benchmark data set. We built a high-quality benchmark data set named GalaxyDB for DPI prediction. This industry-scale data set along with an unbiased training procedure resulted in a more robust benchmark study. For informative protein representation, we constructed a structure-aware graph neural network method from the protein sequence by combining predicted contact maps and graph neural networks. Through further integration of structure-based representation and high-level pretrained embeddings for molecules and proteins, our model effectively captures the feature representation of the interactions between them. As a result, STAMP-DPI outperformed state-of-the-art DPI prediction methods by decreasing 7.00% mean square error (MSE) in the Davis data set and improving 8.89% area under the curve (AUC) in the GalaxyDB data set. Moreover, our model is an interpretable model with the transformer-based interaction mechanism, which can accurately reveal the binding sites between molecules and proteins.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要