Planarizing Graphs and their Drawings by Vertex Splitting

arxiv(2022)

引用 2|浏览16
暂无评分
摘要
The splitting number of a graph $G=(V,E)$ is the minimum number of vertex splits required to turn $G$ into a planar graph, where a vertex split removes a vertex $v \in V$, introduces two new vertices $v_1, v_2$, and distributes the edges formerly incident to $v$ among its two split copies $v_1, v_2$. The splitting number problem is known to be NP-complete. In this paper we shift focus to the splitting number of graph drawings in $\mathbb R^2$, where the new vertices resulting from vertex splits can be re-embedded into the existing drawing of the remaining graph. We first provide a non-uniform fixed-parameter tractable (FPT) algorithm for the splitting number problem (without drawings). Then we show the NP-completeness of the splitting number problem for graph drawings, even for its two subproblems of (1) selecting a minimum subset of vertices to split and (2) for re-embedding a minimum number of copies of a given set of vertices. For the latter problem we present an FPT algorithm parameterized by the number of vertex splits. This algorithm reduces to a bounded outerplanarity case and uses an intricate dynamic program on a sphere-cut decomposition.
更多
查看译文
关键词
vertex splitting,graphs,drawings
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要