RNA Sequencing in COVID-19 patients identifies neutrophil activation biomarkers as a promising diagnostic platform for infections

PLOS ONE(2022)

引用 17|浏览7
暂无评分
摘要
Infection with the SARS-CoV2 virus can vary from asymptomatic, or flu-like with moderate disease, up to critically severe. Severe disease, termed COVID-19, involves acute respiratory deterioration that is frequently fatal. To understand the highly variable presentation, and identify biomarkers for disease severity, blood RNA from COVID-19 patient in an intensive care unit was analyzed by whole transcriptome RNA sequencing. Both SARS-CoV2 infection and the severity of COVID-19 syndrome were associated with up to 25-fold increased expression of neutrophil-related transcripts, such as neutrophil defensin 1 (DEFA1), and 3-5-fold reductions in T cell related transcripts such as the T cell receptor (TCR). The DEFA1 RNA level detected SARS-CoV2 viremia with 95.5% sensitivity, when viremia was measured by ddPCR of whole blood RNA. Purified CD15+ neutrophils from COVID-19 patients were increased in abundance and showed striking increases in nuclear DNA staining by DAPI. Concurrently, they showed >10-fold higher elastase activity than normal controls, and correcting for their increased abundance, still showed 5-fold higher elastase activity per cell. Despite higher CD15+ neutrophil elastase activity, elastase activity was extremely low in plasma from the same patients. Collectively, the data supports the model that increased neutrophil and decreased T cell activity is associated with increased COVID-19 severity, and suggests that blood DEFA1 RNA levels and neutrophil elastase activity, both involved in neutrophil extracellular traps (NETs), may be informative biomarkers of host immune activity after viral infection.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要