Tracking Peripheral Artery Motion and Vascular Resistance With a Multimodal Wearable Sensor Under Pressure Perturbations.

Journal of biomechanical engineering(2022)

引用 2|浏览16
暂无评分
摘要
The status of peripheral arteries is known to be a key physiological indicator of the body's response to both acute and chronic medical conditions. In this paper, peripheral artery deformation is tracked by wearable photoplethysmograph (PPG) and piezo-electric (polyvinylidene difluoride, PVDF) sensors, under pressure-varying cuff. A simple mechanical model for the local artery and intervening tissue captures broad features present in the PPG and PVDF signals on multiple swine subjects, with respect to varying cuff pressure. These behaviors provide insight into the robustness of cardiovascular property identification by noninvasive wearable sensing. This is found to help refine noninvasive blood pressure measurements and estimation of systemic vascular resistance (SVR) using selected features of sensor amplitude versus applied pressure.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要