Enzyme-Loaded Hemin/G-Quadruplex-Modified ZIF-90 Metal-Organic Framework Nanoparticles: Bioreactor Nanozymes for the Cascaded Oxidation of N-hydroxy-l-arginine and Sensing Applications

SMALL(2022)

引用 23|浏览3
暂无评分
摘要
Biocatalytic cascades are challenging to operate in homogeneous solution, where diffusional mass transport hinders efficient communication between the reactive components. There is great interest in developing devices to perform such transformations in confined environments, which increase the efficiency of the cascaded process by generating high local concentrations of the reactive species. Herein, a bioreactor-nanozyme assembly is introduced for the cascaded aerobic oxidation of N-hydroxy-l-arginine (NOHA) to citrulline in the presence of glucose. The reaction mimics a key step in the nitric oxide synthase oxidation of l-arginine in nature. The system consists of glucose oxidase (GOx)-loaded hemin/G-quadruplex (hemin/G4)-modified ZIF-90 metal-organic framework nanoparticles. The aerobic oxidation of glucose by GOx yields H2O2 that fuels the hemin/G4-catalyzed oxidation of NOHA into citrulline. The process driven by the bioreactor-nanozyme system is approximate to sixfold enhanced compared to the homogeneous mixture of the biocatalysts, due to its operation in the confined environment of the nanoparticles. Extension to a three-step cascade is then demonstrated using a bioreactor composed of beta-galactosidase/GOx-loaded hemin/G4-modified ZIF-90 nanoparticles activating the cascaded oxidation of NOHA to citrulline, in the presence of lactose. Moreover, the bioreactor-nanozyme hybrid is applied as a functional optical sensor of glucose, using fluorescence or chemiluminescence as readout signals.
更多
查看译文
关键词
biocatalytic cascades, chemiluminescence, DNA nanotechnology, DNAzymes, nitric oxide, sensors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要