Evolutionary Dynamics of Type 2 Porcine Reproductive and Respiratory Syndrome Virus by Whole-Genome Analysis

VIRUSES-BASEL(2021)

引用 10|浏览4
暂无评分
摘要
Porcine reproductive and respiratory syndrome virus (PRRSV), an important pathogen in the swine industry, is a genetically highly diverse RNA virus. However, the phylogenetic and genomic recombination properties of this virus are not yet fully understood. In this study, we performed an integrated analysis of all available whole-genome sequences of type 2 PRRSV (n = 901) to reveal its evolutionary dynamics. The results showed that there were three distinct phylogenetic lineages of PRRSV in their distribution patterns. We identified that sublineage 2.7 (L2.7), associated with a NADC30 cluster, had the highest substitution rate and higher viral genetic diversity, and inter-lineage recombination is observed more frequently in L2.7 PRRSV compared to other sublineages. Most inter-lineage recombination events detected are observed between L2.7 PRRSVs (as major parents) and L3.4 (a JXA1-R-related cluster)/L3.7 (a WUH3-related cluster) PRRSVs (as minor parents). Moreover, the recombination hotspots are located in the structural protein gene ORF2 and ORF4, or in the non-structural protein gene nsp7. In addition, a GM2-related cluster, L3.2, shows inconsistent recombination modes compared to those of L2.7, suggesting that it may have undergone extensive and unique recombination in their evolutionary history. We also identified several amino acids under positive selection in GP2, GP4 and GP5, the major glycoproteins of PRRSV, showing the driving force behind adaptive evolution. Taken together, our results provide new insights into the evolutionary dynamics of PPRSV that contribute to our understanding of the critical factors involved in its evolution and guide future efforts to develop effective preventive measures against PRRSV.
更多
查看译文
关键词
porcine reproductive and respiratory syndrome virus, Bayesian evolution, lineages, molecular epidemiology, recombination
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要