Magnetic Moment Preservation and Emergent Kondo Resonance of Co-Phthalocyanine

Physical review letters(2022)

引用 1|浏览6
暂无评分
摘要
Magnetic molecules on surfaces have been widely investigated to reveal delicate interfacial couplings and for potential technological applications. In these endeavors, one prevailing challenge is how to preserve or recover the molecular spins, especially on highly metallic substrates that can readily quench the magnetic moments of the admolecules. Here, we use scanning tunneling microscopy and spectroscopy to exploit the semimetallic nature of antimony and observe, surprisingly yet pleasantly, that the spin of Cophthalocyanine is well preserved on Sb(111), as unambiguously evidenced by the emergent strong Kondo resonance across the molecule. Our first-principles calculations further confirm that the optimal density of states near the Fermi level of the semimetal is a decisive factor, weakening the overall interfacial coupling, while still ensuring sufficiently effective electron-spin scattering in the many-body system. Beyond isolated admolecules, we discover that each of the magnetic moments in a molecular dimer or a densely packed island is distinctly preserved as well, rendering such molecular magnets immense potentials for ultrahigh density memory devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要