Reciprocity between retrograde signal and putative metalloprotease reconfigures plastidial metabolism and structure

biorxiv(2021)

引用 0|浏览6
暂无评分
摘要
Reconfiguration of the plastidial proteome in response to environmental inputs is central to readjustment of its metabolic and structural states. This is necessary for the functionality of this metabolic hub, and the maintenance of organismal integrity. This report establishes the role of the plastidial retrograde signaling metabolite, MEcPP, in increasing the abundance of the putative plastidial metalloprotease (VIR3), and the ensuing decline of VIR3 target enzymes, ascorbate peroxidase and glyceraldehyde 3-phophate dehydrogenase B. The decreased abundance of these enzymes is linked to increased levels of their substrates: H2O2, an elicitor of salicylic acid production and stromule formation; and G3P the substrate for MEcPP synthesis. High-light treatment of wild type plants recapitulated the VIR3-associated reconfiguration of the plastidial metabolic and structural states. These results identify a previously unrecognized link between the stress-induced plastidial retrograde signaling metabolite and a putative zinc-binding metalloprotease. Moreover, the data reveal that the reciprocity between these two components, results in the reconfiguration of the metabolic and structural states of the plastid, deemed necessary to maintain cellular integrity and to shape adaptive responses.
更多
查看译文
关键词
putative metalloprotease,plastidial metabolism,retrograde signal
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要