Telecom-band hyperentangled photon pairs from a fiber-based source

PHYSICAL REVIEW A(2022)

引用 4|浏览16
暂无评分
摘要
Hyperentanglement, the simultaneous and independent entanglement of quantum particles in multiple degrees of freedom, is a powerful resource that can be harnessed for efficient quantum information processing. In photonic systems, the two degrees of freedom (DOFs) often used to carry quantum and classical information are polarization and frequency, thanks to their robustness in transmission, both in free space and in optical fibers. Telecom-band hyperentangled photons generated in optical fibers are of particular interest because they are compatible with existing fiber-optic infrastructure and can be distributed over fiber networks with minimal loss. Here, we experimentally demonstrate the generation of telecom-band biphotons hyperentangled in both the polarization and frequency DOFs using a periodically poled silica fiber and observe entanglement concurrences above 0.95 for both polarization and frequency DOFs. Furthermore, by concatenating a Hong-Ou-Mandel interference test for frequency entanglement and full state tomography for polarization entanglement in a single experiment, we can demonstrate simultaneous entanglement in both the polarization and frequency DOFs. The states produced by our hyperentanglement source can enable protocols such as dense coding and high-dimensional quantum key distribution.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要