RPL3L-containing ribosomes modulate mitochondrial activity in the mammalian heart

biorxiv(2021)

引用 1|浏览14
暂无评分
摘要
The existence of naturally occurring ribosome heterogeneity is now a well-acknowledged phenomenon. However, whether this heterogeneity leads to functionally diverse 'specialized ribosomes' is still a controversial topic. Here, we explore the biological function of RPL3L, a ribosomal protein (RP) paralog of RPL3 that is exclusively expressed in muscle and heart tissues, by generating a viable homozygous Rpl3l knockout mouse strain. We identify a rescue mechanism in which, upon Rpl3l depletion, RPL3 becomes upregulated, yielding RPL3-containing ribosomes instead of RPL3L-containing ribosomes that are typically found in cardiomyocytes. Using both ribosome profiling (Ribo-Seq) and a novel orthogonal approach consisting of ribosome pulldown coupled to nanopore sequencing (Nano-TRAP), we find that RPL3L neither modulated translational efficiency nor ribosome affinity towards a specific subset of transcripts. By contrast, we show that depletion of RPL3L leads to increased ribosome-mitochondria interactions in cardiomyocytes, which is accompanied by a significant increase in ATP levels, potentially as a result of mitochondrial activity fine-tuning. Our results demonstrate that the existence of tissue-specific RP paralogs does not necessarily lead to enhanced translation of specific transcripts or modulation of translational output. Instead, we reveal a complex cellular scenario in which RPL3L modulates the expression of RPL3, which in turn affects ribosomal subcellular localization and, ultimately, mitochondrial activity. ### Competing Interest Statement EMN has received travel expenses to participate in Nanopore conferences. The authors declare that they have no competing interests.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要