Microfluidic-templating alginate microgels crosslinked by different metal ions as engineered microenvironment to regulate stem cell behavior for osteogenesis

Materials Science and Engineering: C(2021)

引用 10|浏览10
暂无评分
摘要
Cell microenvironment is a collection of dynamic biochemical and biophysical cues which functions as the key factor in determining cell behavior. Encapsulating single cell into micrometer-scale hydrogels which mimics the cell microenvironment can be used for single cell analysis, cell therapies, and tissue engineering. Here, we developed a microfluidics-based platform to engineer the niche environment at single cell level using alginate microgels crosslinked by different metal ions to regulate stem cell behavior for bone regeneration. Specifically, we revealed that Ca2+ in the engineered microenvironment promoted osteogenic differentiation of encapsulated stem cells and substantially accelerated the matrix mineralization compared to Sr2+ in vitro. However, the superior osteoinductive capacity of Ca2+ compared with Sr2+ led to comparable bone healing in a rat bone defect model. This attributed to Sr2+ in microgels to inhibit the osteoclast activity and bone resorption after implantation. In summary, the present study demonstrates metal ions as a critical factor in the environmental cues to affect cell behavior and influence the efficacy of stem cell-based therapy in tissue regeneration, and provides new insights to engineer an expecting microenvironment for regenerative medicine.
更多
查看译文
关键词
Cell microenvironment,Mesenchymal stem cells,Metal ions,Alginate microgels,Osteogenesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要