Influence of temperature-salinity-depth structure of the upper-ocean on the frequency shift of Brillouin LiDAR

OPTICS EXPRESS(2021)

引用 12|浏览5
暂无评分
摘要
Brillouin-based LiDAR is an alternative remote sensing technique for measuring the distribution profiles of temperature, salinity, and sound speed in the upper ocean mixed layer. Its principle is based on the dependence of Brillouin frequency shift on the temperature, salinity, and depth of ocean. Therefore, it is necessary to investigate the effect of various seawater parameters on Brillouin frequency shift for ocean remote sensing by using the Brillouin LiDAR. Here we theoretically and experimentally investigate the influence of temperature, salinity, and pressure (depth) of seawater on Brillouin frequency shift in the upper ocean for the first time. Numerical simulations of the distribution profiles of temperature, salinity, and Brillouin frequency shift in the upper-ocean mixed layers of East China Sea and South China Sea were performed, respectively, by employing the Brillouin equations and the World Ocean Atlas 2018 (WOA18). A special ocean simulation system was designed to carry out the stimulated Brillouin scattering (SBS) experiments for validating the numerical simulations. The results show that the seawater temperature is the most important factor for the Brillouin frequency shift in the upper-ocean mixed layer compared with the salinity and pressure. At the same salinity and pressure, the frequency shift increases by more than 10 MHz for every 1 degrees C increase in temperature. Also, the differences of Brillouin frequency shift between experimental and theoretical values at the same parameter conditions were analyzed. The experimental results coincide well with the theoretical simulations. This work is essential to future applications of Brillouin LiDAR in remote sensing of the temperature, salinity, or sound velocity profiles of ocean. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要