High-Performance And Industrially Viable Nanostructured Siox Layers For Interface Passivation In Thin Film Solar Cells

SOLAR RRL(2021)

引用 18|浏览19
暂无评分
摘要
Herein, it is demonstrated, by using industrial techniques, that a passivation layer with nanocontacts based on silicon oxide (SiOx) leads to significant improvements in the optoelectronical performance of ultrathin Cu(In,Ga)Se-2 (CIGS) solar cells. Two approaches are applied for contact patterning of the passivation layer: point contacts and line contacts. For two CIGS growth conditions, 550 and 500 degrees C, the SiOx passivation layer demonstrates positive passivation properties, which are supported by electrical simulations. Such positive effects lead to an increase in the light to power conversion efficiency value of 2.6% (absolute value) for passivated devices compared with a nonpassivated reference device. Strikingly, both passivation architectures present similar efficiency values. However, there is a trade-off between passivation effect and charge extraction, as demonstrated by the trade-off between open-circuit voltage (V-oc) and short-circuit current density (J(sc)) compared with fill factor (FF). For the first time, a fully industrial upscalable process combining SiOx as rear passivation layer deposited by chemical vapor deposition, with photolithography for line contacts, yields promising results toward high-performance and low-cost ultrathin CIGS solar cells with champion devices reaching efficiency values of 12%, demonstrating the potential of SiOx as a passivation material for energy conversion devices.
更多
查看译文
关键词
Cu(In, Ga)Se-2, passivation, photolithography, silicon oxide, ultrathin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要