Analysis Of Spatter Removal By Sieving During A Powder-Bed Fusion Manufacturing Campaign In Grade 23 Titanium Alloy

METALS(2021)

引用 4|浏览4
暂无评分
摘要
The Laser-based Powder Bed Fusion (L-PBF) process uses a laser beam to selectively melt powder particles deposited in a layer-wise fashion to manufacture components derived from Computer-Aided Design (CAD) information. During laser processing, material is ejected from the melt pool and is known as spatter. Spatter particles can have undesirable geometries for the L-PBF process, thereby compromising the quality of the powder for further reuse. An integral step in any powder replenishing and reuse procedure is the sieving process. The sieving process captures spatter particles within the exposed powder that have a diameter larger than a defined mesh size. This manuscript reports on Ti6Al4V (Grade 23) alloy powder that had been subjected to seven reuse iterations, focusing on the characterisation of powder particles that had been captured (i.e., removed) by the sieving processes. Characterisation included chemical composition focusing upon interstitial elements O, N and H (wt.%), particle morphology and particle size analysis. On review of the compositional analysis, the oxygen contents were 0.43 wt.% and 0.40 wt.% within the 63 mu m and 50 mu m sieve-captured powder, respectively. Additionally, it was found that a minimum of 79% and 63% of spatter particles were present within the captured powder removed by the 63 mu m and 50 mu m sieves, respectively.
更多
查看译文
关键词
additive manufacturing (AM), Ti6Al4V, metal powder, sieving, agglomeration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要